

FUNDING: DE-FC26-06NT42811

OXY-FUEL BURNER AND INTEGRATED POLLUTANT REMOVAL RESEARCH AND DEVELOPMENT TEST FACILITY

Jupiter Oxygen Corporation 4825 N. Scott Street Suite 200 Schiller Park, IL 60176

Principle Investigator: Mark Schoenfield Presenter: Manny Menendez

JUPITER OXYGEN ENERGY TECHNOLOGY

- Development and Application of Oxy-fuel Technology
- Patents and Licensing
- Consulting Service

Fossil Fuel: coal, natural gas, oil, and biomass

Project Funding

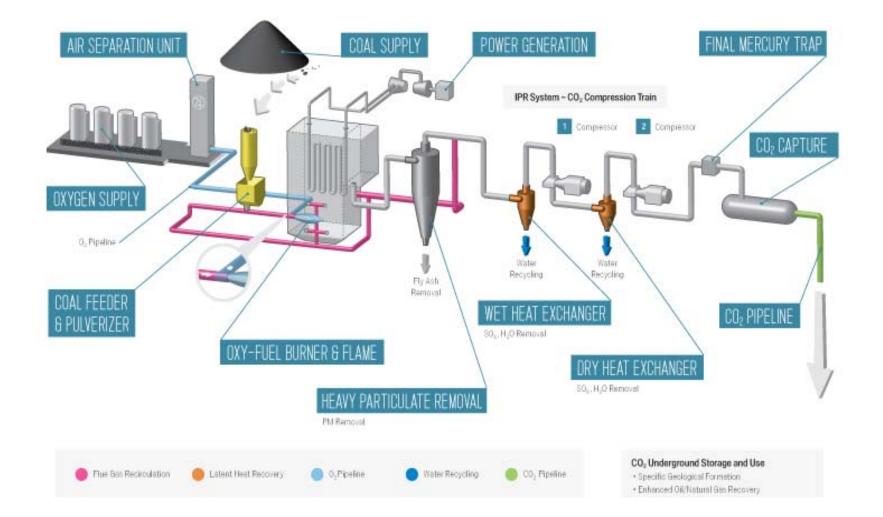
Project revision	Start date	Government cost share	Recipient cost share	Total estimate	
0	10/1/2006	\$ 2,051,670	\$ 517,455	\$ 2,569,125	
1	4/1/2008	\$ 972,674	\$ 243,162	\$ 1,215,836	
2	4/1/2009	\$ 669,784	\$ 173,492	\$ 843,276	
2010-11	4/1/2010	\$ 2,825,387	\$ 705,560	\$ 3,530,947	
Project total	Completion date 9/30/2012	\$ 6,519,515	\$ 1,639,669	\$ 8,159,184	
		79.9%	20.1%	100%	

Project Participants

- Jupiter Oxygen Corporation
- NETL
- Industry and academic partners

SNC Lavalin America, Inc Reaction Engineering International Purdue University Coalteck Professor Stamps, Evansville University EPRI

Project Objectives


- Design, construct, and operate a 5 MWe equivalent test boiler facility
- Design, construction, and operate a 20 KWe equivalent IPR[®] facility
- Operate the test facility at steady state optimum oxy-coal combustion and perform parametric studies.
- Demonstrate oxy-coal combustion NOX levels no higher than 0.15 LB/MMBTU
- Demonstrate that CO₂ from the boiler/ IPR[®] meets the specifications for deep saline aquifer sequestration and/or enhanced oil recovery
- Evaluate the retrofit impact of oxy-coal combustion and the IPR[®] process on power plant design issues
- Generate the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up and conform to DOE's Carbon Sequestration Program goals

Project Objectives

- Design and construct an air-coal combustion burner for the 5 MWe equivalent test boiler. Operate air-coal burner to develop an air-coal combustion base line for the test boiler.
- Develop and implement a high flame temperature closed loop control strategy for the 5 MWe equivalent test boiler.

Technology Background

JOC High Flame Temperature Oxy-Combustion

- Development of oxy-combustion technology for Jupiter Aluminum facility in Hammond, IN
 - Oxy-combustion process in use since 1997 in the aluminum furnace
- Jupiter Oxygen as a CRADA partner with the NETL (2003)
 - Successful retrofit of 0.5MWe equivalent boiler with JOC high flame temperature oxycombustion
 - Produced saturated steam while maintaining boiler interior temperature profile the same as with air firing
 - Boiler efficiency gains resulted
- Jupiter Oxygen/NETL project funded by DOE (2006)

Technology Background

JOC High Flame Temperature Oxy-combustion

• Key characteristics

- Eliminate air from the combustion system
- Fuel and oxygen mixed at the burner undiluted with flue gas recycle except to motivate coal (unlike low temperature oxy-combustion which dilutes oxygen with flue gas recycle prior to combustion)
- Results in a high flame temperature to enhance heat transfer in the radiant zone
- Flue gas produced is primarily carbon dioxide and water
- Flue gas recycle introduced around the flame/combustion zone to adjust the total flue gas volume flow and transfer heat duty to the convective zone as required
- Additional FGR does not lower flame temperature

Technology Background JOC High Flame Temperature

- Benefits
 - Significantly reduce NO_x emissions at combustion
 - Enhanced radiant heat transfer increases boiler efficiency which results in boiler fuel savings
 - Less fuel results in lower carbon generation, reduced capture costs, and lower oxygen demand
 - Reduced volume of flue gas and concentrated carbon dioxide in flue gas also reduces the cost of carbon capture
- Challenges
 - Burner stability and performance
 - Balancing heat duty in radiant and convective zones for retrofit projects or conventional new build projects
 - Minimizing air in-leakage to boiler

JUPITER OXYGEN CORPORATION

Technology Background NETL Integrated Pollutant Removal (IPR[®]) System

- Key Characteristics
 - A series of compression stages where cooling upstream of each stage is leveraged for heat recovery and CO_2 purification
 - Heat recovery step employs both direct-contact and indirect heat exchange
 - Condensed water is removed from the flue gas and recycled for power plant use
 - Water-soluble materials are removed from the flue gas
- Advantages
 - Integration of IPR[®] with the power plant thermal cycle minimizes parasitic load for the work required to remove pollutants and capture/process CO₂
 - Condensed water captured from the combustion flue gas is sufficient offset 100% of the boiler feed water makeup and up to 7% of the cooling water makeup for the plant
 - IPR[®] uses "off the shelf" technology
- Challenges
 - Optimizing material selection costs while minimizing corrosion concerns
 - Treatment of captured water for release and/or use in the plant water supply

Project Accomplishments

- Retrofitted and operated a 5 MWe equivalent test boiler facility
 - No major boiler modifications required
 - No increased fouling and slagging indicated (study continues)
 - No damage to boiler materials indicated (study continues)
 - Operated the test facility with air-natural gas and oxy-natural gas combustion
 - Performed parametric studies with natural gas combustion
 - Designed, constructed, and operated a pulverized coal feed system with a scaled up oxycoal burner from the CRADA work
 - An oxy/coal burner has been developed thru several stages in cooperation with Maxon Corporation and with CFD modeling by REI.
 - A 2nd generation oxy/coal burner incorporating four tangential oxygen nozzles to promote mixing has been tested at various loads.
 - Evaluation of results and comparison of data to CFD models has lead to the development further enhancements to the burner design.
 - The JOC burner generation 2.1 is currently in initial testing at Hammond.

Project Accomplishments

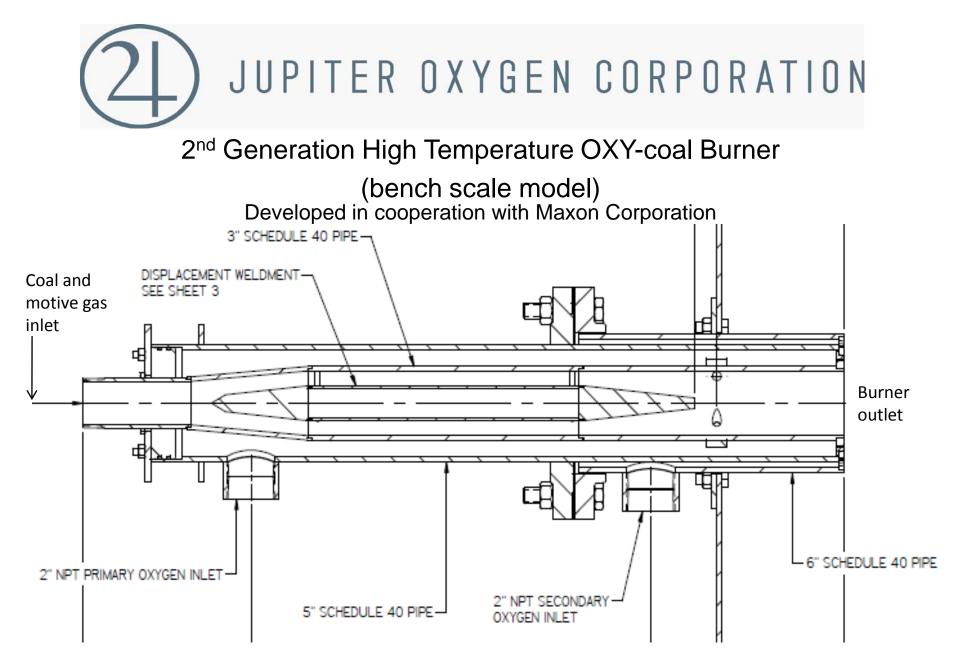
- Designed, constructed, and operated a 20 KWe equivalent IPR[®] facility
 - Test IPR[®] system has yielded gas composition and liquid composition process results
 - Demonstrated CO₂ capture at 95% to 100%
 - Pollutant removal from captured CO₂
 - 95% NOx , SOx, particulate
 - 60% to 90% mercury
 - Water treatment tests (on flue gas condensate) point to FeCl₃ as an effective flocculent especially when paired with polymeric flocculent
 - In-situ corrosion sensors have been installed to characterize material possibilities inservice
- Flame analysis instrumentation upgraded to include
 - In-furnace camera viewing the entire flame
 - Mono-chromators and spectrometers detecting gray-body and radiant-gas signatures for independent temperature determination
 - Total-radiometers coupled with cameras to track total radiation while taking port-occlusioncaused attenuation into account.

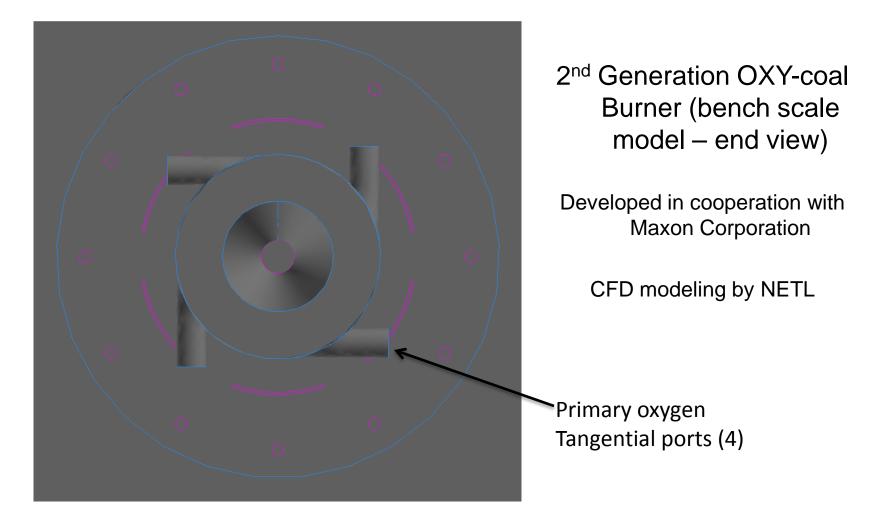
Project Accomplishments

- Air-coal baseline burner
 - An air/coal burner has been specifically design and fabricated for the Jupiter Test Facility boiler along with auxiliary equipment.
 - The air/coal burner system has been successfully operated on the test boiler and several test runs were completed at various loads.
 - Test results are currently being evaluated by the JOC team
- System economic study
 - Full-scale parametric model of a power plant retrofitted with high temperature oxycombustion and an IPR[®] system has been developed.
 - Provided retrofit design basis to NETL systems group.
 - NETL systems group is has developed a cost estimate for high flame temperature oxycombustion retrofit to a commercial power plant.

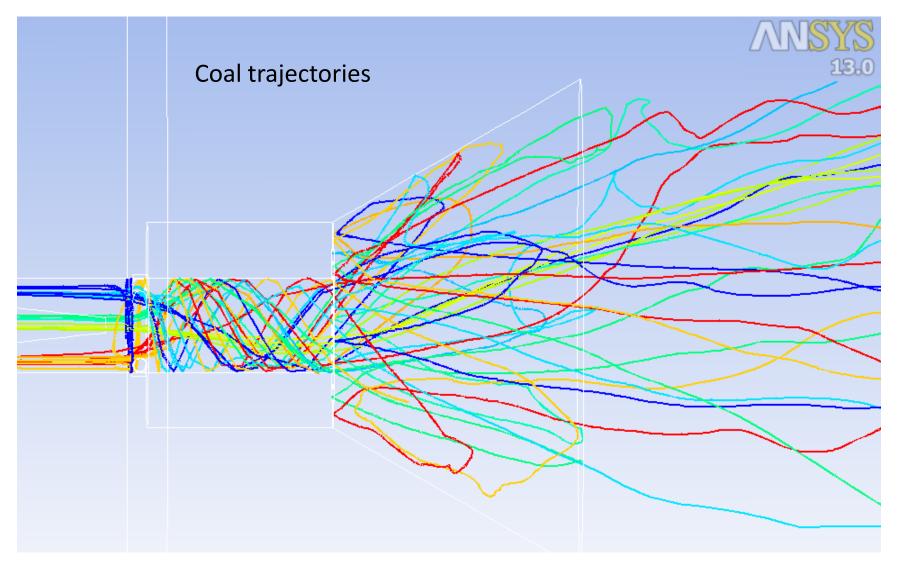
5 MWe Equivalent Test Boiler 50 MMBTU/hr OXY-COAL BURNER

JUPITER OXYGEN CORPORATION

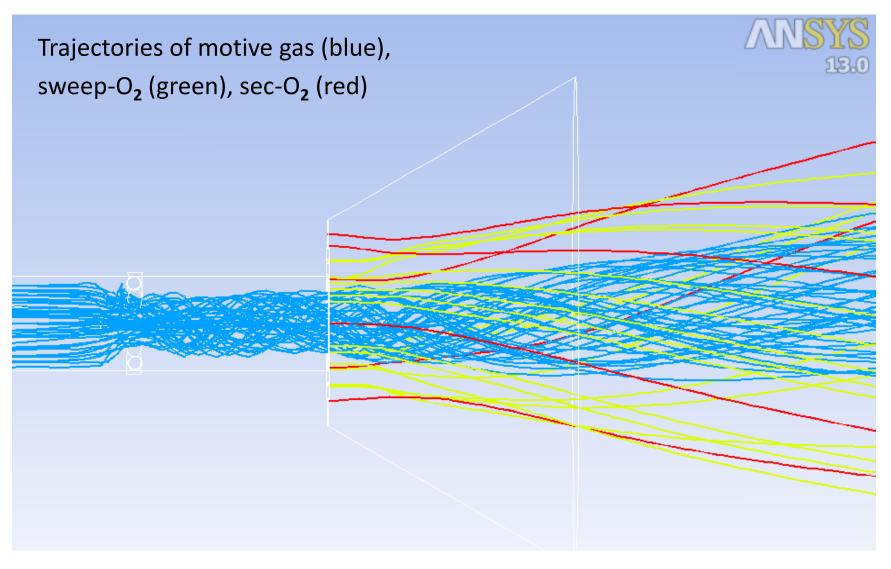

20 KWe equivalent IPR System



Coal Pulverizer and Flue Gas Recycle Loop

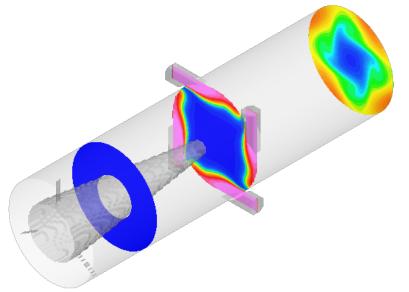

JUPITER OXYGEN CORPORATION

2nd Generation OXY-coal Burner


(3.4MMBTU/hr bench scale model)

2nd Generation OXY-coal Burner (3.4MMBTU/hr bench scale model)

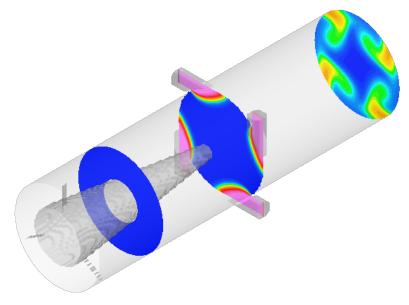
2nd Generation OXY-coal Burner


Design vs. Results

	Design case	Actual operating point
Firing Rate (MMBtu/h)	50	41
Total Coal Flow, (lb/h)	4142	3,395
Motive Gas (FGR) Flow (lb/h)	7195	10725
Total Primary Oxygen (lb/h)	5903	4675
Secondary Oxygen (lb/h)	3159	2660
Total Oxygen: (lb/h)	9061	7335
Oxygen content at the nozzle	40.0%	27.5%
Exhaust excess O ₂ (vol %, wet)	3.00%	3.56%
Ash LOI		0.24%

2nd Generation OXY-coal Burner Design vs. Results O₂ Concentration Profiles

Design Coefficient of Variation = 39%


Nozzle exit oxygen content= 40%

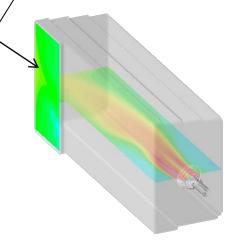
Operating Coefficient of Variation = 52%

Nozzle exit oxygen content = 27.5%

Modeling by Reaction Engineering International

Burner and boiler modeling cases by REI

Case3	Based on package boiler tests conducted on 9/7/11 Generation 2.0 Burner 27.5% Oxygen at the nozzle
Case4	41 MMBtu/h Generation 2.1 Burner 3.0% O_2 in motive gas (100% FGR as motive) 40% oxygen at the nozzle
Case5	41 MMBtu/h Generation 2.1 Burner 10.0% O_2 in motive gas 40% oxygen at the nozzle
Case6	41 MMBtu/h Generation 2.1 Burner 20.0% O_2 in motive gas 40% oxygen at the nozzle



Burner and boiler modeling results at the screen wall by REI

	Case3	Case4	Case5	Case6
Burner design	2.0	2.1	2.1	2.1
Screen wall temperature (°F)	2165	2231	2211	2240
Unburned Carbon in Fly Ash	11.3%	1.1%	1.7%	1.9%
Particle Burnout	98.4%	99.7%	99.6%	99.5%
Predicted Radiant Furnace Heat Loss (MM Btu/h)	23.49	27.47	27.31	27.00
Percent Heat Input Lost in Radiant Section	58.4%	68.6%	68.1%	67.4%
Peak flame temperature (F)	4500	4800	4800	4700

Entrance to the Screen Tubes

(Model Exit is 3 ft / downstream of this plane)

JUPITER OXYGEN CORPORATION

Project work going forward

- Generation 2.1 oxy-coal burner testing
 - Burner testing and comparison against CFD modeling
 - Conduct test matrix of control variables
 - Perform extended steady state run at optimal operating conditions
- Slagging and fouling study
 - Slagging and fouling study to be completed during up coming oxy/coal testing
- Develop air-coal combustion base line
 - Evaluate data from recently completed testing and performance of air/coal burner with respect to oxy-coal performance

Project work going forward

- IPR[®] evaluation
 - Improved gas analysis at all stages
 - Energy recovery optimization modeling
 - In-situ and correlative lab tests for corrosion in IPR-produced environments

• Generate additional technical data

- High flame temperature oxy-coal/ IPR[®] retrofits
- Captured CO₂ meeting EOR/sequestration specifications
- Commercial scale-up study with economics
- Meeting DOE Existing Plants Program Goals

Summary

Combined Jupiter Oxygen high flame temperature oxy-combustion technology and NETL IPR[®] pollution control and carbon capture system for coal fired power plants

- Technologies provide a means to retrofit existing power plants and build new ones.
- Boiler system fuel savings can be expected from high flame temperature oxycombustion technology.
- 95-100% carbon capture is feasible.
- Technologies allow fully carbon capture ready power plants to exist today which can be completely compliant with clean air regulatory requirements.
- Water recovery will exceed boiler feed water makeup requirements and partial cooling water makeup requirements.
- Heat integration from cryogenic oxygen plant and IPR[®] compressors can lower fuel costs.

Summary

- While high flame temperature oxy-combustion burner and IPR[®] scale-up and optimization will continue during the current project year, these technologies are ready for commencement of a demonstration pilot project.
- The 5 MWe equivalent boiler retrofit completed for this JOC-NETL project has demonstrated
 - High flame temperature oxy-combustion can make steam in a conventional, older boiler without changing boiler interior materials
 - The IPR system uses commercialized equipment, and scale-up also will use commercialized equipment.
- Total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20%.
- Preliminary economic projections indicate that new and retrofitted coal fired power plants can achieve 95-100% carbon capture with COE increase of not more than 35% provided a net CO₂ revenue of approximately \$20 per ton.

Thank you